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SUMMARY 

The algebraic turbulent model of Baldwin and Lomax was incorporated into the incompressible full 
Navier-Stokes code FIDAP. This model was extensively tested in the past in finite difference codes. We 
believe that the incorporation of the model also into the finite element code has resulted in a practical method 
to compute a variety of separated turbulent 2D flows. Firstly, we use the model to compute the attached flow 
about an aerofoil. Next, the application of the model to separated flows is presented by computing the flows 
at high angles of attack up to maximum lift. It is shown that the model is capable of predicting separation, 
steady stall and CLmax. As a difficult test of the model we compute the laminar separation bubble 
development directly using the full Navier-Stokes finite element code. As far as we know, this approach has 
not yet been reported. The importance of using an appropriate upwinding is discussed. When possible, 
comparison of computed results with experiments is presented and the agreement is good. 
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INTRODUCTION 

In recent years, with the rapid increase of computing power, there has been an increasing demand 
in the aeronautical industry to use CFD codes to assist the engineer in evaluating the aerodynamic 
performance parameters such as lift and drag of various aerodynamic desi'gns. 

The main interest is in exterior flows with high Reynolds number, which are mainly turbulent. 
In this paper we treat the viscous flow about a two-dimensional aerofoil. Werestrict our attention 
to steady incompressible flows. The viscous laminar flow about an aerofoil is governed by the 
steady Navier-Stokes and continuity equations 

- = 0. 
a x ,  

For high-Reynolds-number flows the laminar boundary layer is absolutely unstable and 
undergoes transition to turbulence. Equations (1) and (2) are not directly soluble for turbulent 
flows and as usual we use the time-averaged form of these equations 

&k -- - 0. 
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The Reynolds turbulent stress tensor 

( 5 )  

describes the influence of the fluctuating motion on the average motion. To close system (3) 
through (9, we must express R ,  in terms of known mean flow quantities. This task is known as 
turbulence modelling. 

There are basically two approaches to turbulence modelling. The first approach uses algebraic 
relations to express R ,  with the help of Uk.  The second approach uses additional transport 
equations derived from equations (1) and (2) for additional turbulent quantities to express the 
Reynolds stresses Rik.' - 3  

Much experience has been gained over the years in the applicability of turbulence models to 
specific flows.2 It is generally agreed that algebraic models do not take history and transport 
effects into account, in contrast to the case of turbulent transport equations. The most popular of 
the transport equation models is the two-equation k--E model. However, the use of the k--E 
equations in addition to (3) and (4) requires that boundary conditions be given for k and E at the 
wall. At the wall k is zero since all velocities vanish there. In this case the solutions for k and E 

would be zero everywhere. Therefore in principle the k--E equations are not applicable at the wall 
region. It is necessary to supply boundary conditions for k and E at some distance away from the 
wall.' Usually it is done at a normal distance y from the solid wall where the log law for the 
velocity applies. For separated exterior aerodynamic flows where the separation point is not 
known in advance, there is no certain velocity law of the wall and therefore the k--E model in 
principle cannot be applied. The k--E model has been successfully applied to confined flows, 
attached flows and recirculating flows because it is possible in these cases to supply reasonable 
boundary conditions for k and E.  For these reasons the rngdelling used for aerodynamic 
applications is mostly algebraic. 

Of the various algebraic models, the most widely used are those of Cebeci and Smith4 and 
Baldwin and L o ~ n a x . ~  The Cebeci-Smith model explicitly requires the use of boundary layer 
concepts such as 6* and u, and is therefore well suited for attached flows. The Cebeci-Smith model 
is not directly applicable to separating boundary layers. On the other hand, the Baldwin-Lomax is 
suitable for both attached and separated boundary layers because it does not require the definition 
of boundary layer quantities. The Baldwin-Lomax model has also been applied to compressible 
turbulent boundary layers.69 It is known that when using the Baldwin-Lomax equilibrium model 
there is a discrepancy between computation and experiment in the case of separated flows, mainly 
because of the premature prediction of the separation point. The discrepancy has been 
demonstrated mainly for compressible flows with shock/boundary layer interaction.8 For 
incompressible flows, where separation is due to the adverse pressure gradient, the discrepancy 
seems to be smaller, as demonstrated by our  results and the results obtained using finite difference 
codes with the Baldwin-Lomax model.6. 

Once the turbulence model of Baldwin and Lomax was selected, a user routine was written and 
incorporated into the incompressible Navier-Stokes finite element code FIDAP. We have applied 
FIDAP plus the incorporated model to different types of incompressible 2D boundary layers 
developing on an aerofoil flying at low Re (1 x lo6) to high Re (9 x lo6). Firstly, the model was 
used to compute the attached viscous flow developing at low angles of attack about NACA 4415. 
Next, the model was used to compute the viscous flow at high angles of attack about aerofoils 
NACA 0012 and NACA 4415. The boundary layer in these cases is separated over large rear parts 
of the aerofoils' upper surface. The model could correctly predict CLmax for these aerofoils. 

For certain aerofoils the transition from laminar to turbulent boundary layer is through a 
laminar separation bubble (LSB). The computation of LSB flows has for a long time been a 

R .  = -u!u' rk r k  
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challenge to CFD codes. As far as we know, all others simulate LSB flows by using viscous/non- 
viscous interaction ana1y~is. l~'  l4 We use the full Navier-Stokes equations with the turbulence 
model to compute LSB flows directly. Following the physics of LSBs, we have developed a 
procedure to compute LSB flows over laminar aerofoils. The robustness of the procedure is also 
demonstrated by computing the LSB flow over an aerofoil at high angles of attack and by 
comparing the C ,  with experimental results. 

Although the most important factor in successfully predicting separated flow is a successful 
model, the upwinding used in the numerical method may have a great effect on the results of the 
flow simulation. Therefore the choice of a suitable upwinding is quite important. The upwinding 
used in FIDAP is a streamline upwinding developed by Brooks and Hughes." Certain features of 
this upwinding are discussed below. 

THE TURBULENCE MODEL 

As noted, The Baldwin-Lomax algebraic model5 is used in all the computations described below. 
Originally, this model was developed for the calculation of compressible boundary layers using 
finite difference codes. This model was introduced in 1978 but only in the last few years has it been 
widely used in Navier-Stokes codes to calculate turbulent separated flows.6* This model has 
escaped the attention of researchers in incompressible flows and especially of those using finite 
elements codes such as FIDAP to solve the Navier-Stokes equations. An important review of 
turbulent models2 for incompressible flows did not include this model. However, this model has 
proven successful in computing practical aerodynamic flows such as turbulent separated flows. 
We describe the model for 2D flows although in principle it can be applied to 3D flows. For 
convenience we drop the bar denoting mean values and all variables appearing below are mean 
flow quantities. To express the Reynolds stresses Ri, by means of mean velocities, one uses the 
Boussinesq eddy viscosity concept: 

Unlike in (3), the turbulent viscosity coefficient v,(xl, x2)  depends on the co-ordinates and is 
defined semi-empirically by the model. Any algebraic model must take into account the structure 
of the turbulent boundary layer, which consists of inner and outer layers. The inner layer is 
adjacent to the wall, where the length and velocity scales are defined by the shear viscosity at the 
wall. The scales in the outer layer depend on the local main flow and to some extent on the flow 
history. The eddy viscosity is written 

where vti and vto are the turbulent viscosities of the inner and outer layers respectively. The value y" 
is the smallest value of y at which the inner and outer formulae are equal. 

For the inner layer the Prandtl-Van Driest formulation is used: 

where 

Y 
Yr 

y +  =- 
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For the outer layer 

where a=0.0168, C ,  = 1.6, F K l e b  is the Klebanof intermittency function, 

FKleb=  l/C1 + 5.5(o'3Y/Yrnax)61, 
F,,, is the maximum value of the vorticity function, 

ymax is the y-location of FmaX, and U,,, and Urnin are the maximum and minimum velocities in a 
profile normal to the surface. 

In the above formulation the co-ordinates x and y are tangential and orthogonal to the profile 
respectively. Therefore we require that the mesh lines within the turbulent layer should be 
orthogonal to the profile. This has been done using FIDAP grid generation. 

THE NUMERICAL METHOD 

As the basic Navier-Stokes code we have applied FIDAP with the algebraic model incorporated 
into it. FIDAP is a finite element code for the incompressible Navier-Stokes equations. For 
turbulent steady flows the equations of conservation of momentum are written in the stress 
divergence form 

For simplicity, instead of the continuity equation (4) we use the pressure penalization", l 2  

with penalty parameter p= 10-9-10-8. Equations ( 1  1) are solved by the Galerkin method in the 
finite element approximation. The resulting system of non-linear equations is solved by the 
method of successive approximations. 

The computational grid 

An important step before the solution of the Navier-Stokes equations is the generation of a 
suitable grid. For high-Reynolds-number turbulent flows the boundary layer is very thin and 
because of the no-slip condition the velocity gradient has a very steep component normal to the 
surface. Therefore we must have high grid resolution normal to surface. Usually the height 6y of 
the first cell above the aerofoil is 0.00006c, where c is the aerofoil chord. The second requirement is 
that the grid lines should be orthogonal to the surface within the entire boundary layer. This is 
because the Baldwin-Lomax model is defined for velocity profiles normal to the aerofoil's surface. 
An example is given in Figure 1. 

On the average, 19 grid points are used inside the boundary layer out of a total of 30 points in 
the y-direction. An important point is the value of Sx, the cell size in the direction tangential to the 
surface, and consequently of the grid aspect ratio Sy/6x. With 200 points around the aerofoil the 
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Figure 1 .  Grid generation for turbulent flow calculations: (a) overall grid about NACA 4415; (b) grid points near the 
aerofoil; (c) grid points at the leading edge 
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grid aspect ratio is about 200. A total of about 7100 grid points are used in the 2D problem. The 
grid points are used as nodes of quadrilateral elements to form isoparametric finite elements 
(Figure 1). 

Boundary and initial conditions 

A sketch of the computational domain is given in Figure 2. The aerofoil is placed inside the 
computational domain. At infinity the computational domain is bounded by lines EF and D G  
about 6 aerofoil chords away from the aerofoil. The top and bottom boundaries are 6 aerofoil 
chords away from the aerofoil. For incompressible flow the pressure is defined up to an additive 
constant. Since the velocity is a constant vector at infinity, it follows from (12) that the constant is 
defined in such a way that 

p ( c o ) = O .  (13) 

UilABC=O. (14) 

(15) 

where u,  is the velocity at infinity and a is the angle of attack. On the part DG, normal zero-stress 
conditions are applied: 

On the aerofoil ABC we have the no-slip condition 

On the part DEFG of the far field boundary we prescribe the free velocity condition 

u1 (co) = u,  cos a, u2 (a) = u m  sin a, 

Figure 2. Boundary and initial conditions for Navier-Stokes equations 
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where nk is the outward-pointing normal unit vector and p is defined by the penalty relation (12) 
everywhere. For the steady state solution we specify as initial conditions the free velocity at 
infinity. 

Upwinding 

All aerofoil codes for solving the Navier-Stokes equations use some form of artificial viscosity 
(or upwinding) for numerical stability. High-Reynolds-number flows are flows with small 
molecular viscosity. The artificial viscosity added for numerical stability may wholly misrepresent 
the structures and scales of turbulent boundary layers to give a wrong flow picture. In FIDAP the 
artificial viscosity has the form of streamline upwinding." This means that the longitudinal 
artificial stress 

where vart is proportional to the mesh size dx, is added to the molecular stress 

au 
ax V-. 

On the other hand, there is no contribution of artificial viscosity to the real shear normal stress 

au 

dY 
V -  

acting across the boundary layer. Consequently the artificial viscosity does not effect the turbulent 
viscosity coefficient in the Baldwin-Lomax model.' 

The longitudinal derivative of the artificial stress, @/ax) (vart aujax), adds an artificial force to the 
pressure gradient and to some extent this may have an influence on the separation point on the 
aerofoil. To reduce this effect it is necessary to refine the mesh in the longitudinal direction. 

RESULTS 

Although in principle the model can be applied to 3D turbulent flows, the 2D version as described 
above was incorporated into FIDAP and applied to a variety of 2D high-Reynolds-number shear 
turbulent flows: attached and separated flows, CLmax prediction and laminar separation bubble 
flows. We give below the results of such flow simulations. 

Attached turbulent jlows 

The attached turbulent flow at Re = 9 x lo6 about the NACA 441 5 aerofoil for angles of attack 
of 0" and 4" was calculated using the well-known Korn-Garabedian 2D code and FIDAP. The 
Korn code solves the flow by viscid/inviscid interaction analysis. The turbulent boundary layer is 
computed by the Nash-Macdonald integral method. Streamlines of the flows as calculated by 
FIDAP are given in Figure 3. It is seen that in both cases the flow is attached to the aerofoil. The 
comparison of the C, distribution as computed by the two programs is given in Figure 4. It is seen 
that the agreement is good. 

Flow separation and CLmax prediction 

As the angle of attack is increased, the adverse pressure gradients increase and eventually the 
flow separates. For aerofoils such as NACA 0012 and NACA 4415 the separation starts at the 
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Figure 3. Streamlines of attached flow about NACA 4415: (a )Re=9  x lo6, a=O"; ( b ) R e = 9 x  lo6, a=4" 

trailing edge. The lift coefficient increases with a even when the separated trailing edge is 
30%40% of a chord long. Eventually the separation becomes massive, the aerofoil stalls and CL 
drops in a manner dependent on the aerofoil shape and Re. The maximum CL obtained is CLmax. 
A sequence of computations for NACA 0012 and NACA 4415 resulted in the prediction of 
CLmax = 1.76 for N A C A  4415 at Re = 9 x lo6 and CLmax = 1.4 for N A C A  0012 at Re = 6 x lo6. For 
all calculations the transition is fixed at 4% of the chord from the leading edge. The C ,  distribution 
and the streamlines are given in Figures 5 and 6. We see that the agreement between predicted and 
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experimental CLmax is good. It is seen that before reaching CLmax the flow is attached. At CLmax 
there is moderate separation and beyond CLmax there is massive separation and the flow in reality 
is highly unsteady.’ 

The effect of Reynolds number on CLmax prediction using the Baldwin-Lomax model is shown 
in Figures 6 and 7. It is seen that for Re= 3 x lo6 the agreement between computed and 
experimental results is not as good as the comparison for Re = 9 x lo6. We note that the gradual 
loss of lift after stall is computed better for the case of Re = 9 x lo6 than for Re = 3 x lo6. This is to 
be expected since the turbulence model is suitable for higher Reynolds numbers. 

Laminar separation bubble computation 

Aerofoils such as NACA 4415 and NACA 0012 develop a minimum pressure peak followed by 
an adverse pressure gradient at the leading edge as the angle of attack increases. The laminar 
boundary layer immediately undergoes transition to turbulent flow. For such flow calculations 
the transition is fixed at 4% of the chord downstream from the minimum pressure. For other 
aerofoils there is laminar separation after minimum pressure for a wide range of angles of attack. 
The laminar flow separates, creating a short bubble, and immediately undergoes transition to 
turbulent flow with reattachment. The calculation of such a flow is very difficult because the start 
and length of the transition region are not known in advance. The calculation must correctly 
simulate the strong interaction between the bubble inside the boundary layer and the external 

A L P H A  

Figure 7. Reynolds number effect on CLmnl prediction, R e = 3  x lo6 
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flow. We have developed a procedure to calculate flows with laminar separation using FIDAP 
plus the incorporated model to solve the full Navier-Stokes equations with no special treatment of 
the bubble geometry. As far as we know, all other methods predict laminar separation bubbles 
using a viscid/inviscid interaction calculation and not by solving the full Navier-Stokes equations 
as we do. 

The first step of the procedure is to solve for the laminar flow at the given Re and angle of attack. 
From the results of this run we get the laminar separation point (LSP, Figure 8). The second step of 
the procedure is to locate the farthest point downstream from the LSP where transition followed 
by turbulent reattachment of the laminar flow is possible (we call this point A). This is done by 
computing the turbulent flows for assumed different positions for point A, where the straight- 
forward application of the Baldwin-Lomax model is started. Analysis of the results of such 
computations after a small number of iterations indicates either transition followed by turbulent 
reattachment or massive separation. Point A is the farthest downstream for which transition with 
reattachment is possible. The distance between the LSP and point A in the cases tested is about 
5% of the chord length. 

In the last step we calculate the flow by application of the Baldwin-Lomax model as described 
above by formulae (6H10), starting at point A. Analysis of the results of this computation shows 
that the wall shear stress decreases downstream from the LSP and at point A is still an appreciable 
fraction of the laminar wall shear stress before the LSP. In this case the Baldwin-Lomax model is 
capable of suppressing laminar separation and of reattaching the flow to close the bubble and to 
build a turbulent boundary layer. 

We have considered two types of laminar aerofoils, PR7 and P250 (Figure 9), developed and 
tested at IAI. For the PR7 aerofoil we apply the procedure as described above. The results are 
shown in Figure 10. For the P250 aerofoil the bubble prediction is more difficult. 
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Figure 8. Laminar separation point location 
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Figure 9. Different types of laminar aerofoils 
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Figure 10. Laminar bubble calculation without intermittency 

It turns out that for the P250 aerofoil when applying the above procedure it is necessary to 
prescribe the manner in which the laminar flow at the LSP undergoes transition to fully turbulent 
flow at point A. This is done by using the intermittency function 

B=cc+v PLt, (20) 
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Figure 11. Laminar bubble calculation with linear intermittency 
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Figure 12. Laminar bubble calculation with exponential intermittency 
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Figure 13. C, for laminar separation bubble 

where p, is the eddy viscosity computed by the Baldwin-Lomax model, p is the molecular viscosity 
and y is the intermittency function. 

We used two types of intermittency functions, linear and exponential, to calculate the laminar 
separation bubble on the P250 aerofoil. The results are shown in Figures 11 and 12. It is seen that 
although the bubble is well predicted using the linear intermittency function, the flow is separated 
at the trailing edge (Figure 11). In the case of the exponential intermittency function4. l 3  the flow is 
not separated at the trailing edge, although the bubble is less pronounced (Figure 12). Comparison 
of the calculated pressure distribution using the exponential intermittency function with 
experimental results for an angle of attack of 6" is shown in Figure 13. The calculation is at an 
angle of attack of 8" because of tunnel calibration effects. It is seen that the agreement is good. 

CONCLUSIONS 

The eddy viscosity model incorporated at IAI into FIDAP is capable of computing 
attached/separated high-Reynolds-number external turbulent flows. It is possible to use FIDAP 
plus the model to predict laminar separation bubbles using the Navier-Stokes equations directly. 
In addition, we have demonstrated that using FIDAP plus the model we can predict CLmax in a 
reliable way for different aerofoils. 

The next step using FIDAP plus the model for 2D flows is to extend the model to turbulent 
flows about multi-element profiles, when the added difficulty of the boundary layer/wake 
interaction of the various components must be considered. 
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APPENDIX: NOMENCLATURE 

aerofoil chord 
lift coefficient, lift/O.5pU2, 
maximum lift coefficient 
pressure coefficient, p / o $ ~ u Z ,  
vorticity function in turbulence model formulation 
turbulent kinetic energy; Von Karman constant in turbulence model formulation 
mixing length 
reference length 
unit normal 
pressure 
Reynolds stress tensor 
Reynolds number, pL, U , / p  
velocity at outer edge of boundary layer 
velocities tangential and normal to surface in turbulence model formulation 
Cartesian velocity components 
free velocity 
Cartesian co-ordinate 
co-ordinates tangential and normal to surface in turbulence model formulation 
distance normal to surface where inner and outer viscosities match 
angle of attack 
pressure penalty parameter 
Klebanof intermittency function 
boundary layer thickness 
mesh sizes tangential and normal to surface 
turbulent energy dissipation rate 
Density 
molecular viscosity 
total viscosity 
kinematic viscosity 
viscous stress tensor 

Subscripts 

i; i 
k tensor notation 
0 

m value at infinity 
t turbulent value 

tensor notation; inner layer in turbulence model formulation 

outer layer in turbulence model formulation 

Superscripts 

( - 1  average value 
( I )  fluctuating value 
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